If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-196x=40
We move all terms to the left:
6x^2-196x-(40)=0
a = 6; b = -196; c = -40;
Δ = b2-4ac
Δ = -1962-4·6·(-40)
Δ = 39376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39376}=\sqrt{16*2461}=\sqrt{16}*\sqrt{2461}=4\sqrt{2461}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-196)-4\sqrt{2461}}{2*6}=\frac{196-4\sqrt{2461}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-196)+4\sqrt{2461}}{2*6}=\frac{196+4\sqrt{2461}}{12} $
| 8r/4=10 | | 19x-10=12x-31 | | 7+3v=-5+7v | | -6x-8x=-8x+12 | | 105=87+y/4 | | T^2+5t+66=0 | | 13n-2=-8 | | 6n+3=-3+5n | | 4/9=-5/6x | | 2(x^2-25)=3x(25-x^2) | | 1/8x=1/3x-10 | | 3(p-5)-4=17 | | -5-2m=7 | | U+e=L | | 4.7x=2.5x+8 | | 12-a=15 | | 0.1(x+250)=3,000 | | 6/10x=8x/12 | | 4/x-3=6x | | x=5.4 | | z+1/2=-3/5 | | G+e=76 | | 2(2x+1)=-7+3x | | 9x+2-7x=3(4+2x) | | 3x+18+3x+12=7x+10 | | q+8=7 | | 4n-6+4=2 | | |4n-6|+4=2 | | w+(-9)=-7 | | 12d-24=2(d-3)+22 | | p-(-8)=1 | | 1.4/1.8=7.2/k |